Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Cell Rep Med ; 5(4): 101490, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574736

RESUMO

While neurodegeneration underlies the pathological basis for permanent disability in multiple sclerosis (MS), predictive biomarkers for progression are lacking. Using an animal model of chronic MS, we find that synaptic injury precedes neuronal loss and identify thinning of the inner plexiform layer (IPL) as an early feature of inflammatory demyelination-prior to symptom onset. As neuronal domains are anatomically segregated in the retina and can be monitored longitudinally, we hypothesize that thinning of the IPL could represent a biomarker for progression in MS. Leveraging our dataset with over 800 participants enrolled for more than 12 years, we find that IPL atrophy directly precedes progression and propose that synaptic loss is predictive of functional decline. Using a blood proteome-wide analysis, we demonstrate a strong correlation between demyelination, glial activation, and synapse loss independent of neuroaxonal injury. In summary, monitoring synaptic injury is a biologically relevant approach that reflects a potential driver of progression.


Assuntos
Esclerose Múltipla , Animais , Humanos , Esclerose Múltipla/patologia , Retina/patologia , Neurônios/patologia , Modelos Animais , Atrofia/patologia
2.
Nat Med ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641750

RESUMO

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.

3.
J Neuroophthalmol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654413

RESUMO

INTRODUCTION: Amelioration of disability in multiple sclerosis requires the development of complementary therapies that target neurodegeneration and promote repair. Remyelination is a promising neuroprotective strategy that may protect axons from damage and subsequent neurodegeneration. METHODS: A review of key literature plus additional targeted search of PubMed and Google Scholar was conducted. RESULTS: There has been a rapid expansion of clinical trials studying putative remyelinating candidates, but further growth of the field is limited by the lack of consensus on key aspects of trial design. We have not yet defined the ideal study population, duration of therapy, or the appropriate outcome measures to detect remyelination in humans. The varied natural history of multiple sclerosis, coupled with the short time frame of phase II clinical trials, requires that we develop and validate biomarkers of remyelination that can serve as surrogate endpoints in clinical trials. CONCLUSIONS: We propose that the visual system may be the most well-suited and validated model for the study potential remyelinating agents. In this review, we discuss the pathophysiology of demyelination and summarize the current clinical trial landscape of remyelinating agents. We present some of the challenges in the study of remyelinating agents and discuss current potential biomarkers of remyelination and repair, emphasizing both established and emerging visual outcome measures.

4.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464078

RESUMO

Background: Preterm white matter injury (PWMI) is the most common cause of brain injury in premature neonates. PWMI involves a differentiation arrest of oligodendrocytes, the myelinating cells of the central nervous system. Clemastine was previously shown to induce oligodendrocyte differentiation and myelination in mouse models of PWMI at a dose of 10 mg/kg/day. The minimum effective dose (MED) of clemastine is unknown. Identification if the MED is essential for maximizing safety and efficacy in neonatal clinical trials. We hypothesized that the MED in neonatal mice is lower than 10 mg/kg/day. Methods: Mouse pups were exposed to normoxia or hypoxia (10% FiO 2 ) from postnatal day 3 (P3) through P10. Vehicle or clemastine fumarate at one of four doses (0.5, 2, 7.5 or 10 mg/kg/day) was given orally to hypoxia-exposed pups. At P14, myelination was assessed by immunohistochemistry and electron microscopy to determine the MED. Clemastine pharmacokinetics were evaluated at steady-state on day 8 of treatment. Results: Clemastine rescued hypoxia-induced hypomyelination with a MED of 7.5 mg/kg/day. Pharmacokinetic analysis of the MED revealed C max 44.0 ng/mL, t 1/2 4.6 hours, and AUC 24 280.1 ng*hr/mL. Conclusion: Based on these results, myelination-promoting exposures should be achievable with oral doses of clemastine in neonates with PWMI. Key Points: Preterm white matter injury (PWMI) is the most common cause of brain injury and cerebral palsy in premature neonates.Clemastine, an FDA-approved antihistamine, was recently identified to strongly promote myelination in a mouse model of PWMI and is a possible treatment.The minimum effective dose in neonatal rodents is unknown and is critical for guiding dose selection and balancing efficacy with toxicity in future clinical trials.We identified the minimum effective dose of clemastine and the associated pharmacokinetics in a murine chronic hypoxia model of PWMI, paving the way for a future clinical trial in human neonates.

6.
ACS Chem Neurosci ; 15(3): 685-698, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265210

RESUMO

Structure-activity relationship studies led to the discovery of PIPE-3297, a fully efficacious and selective kappa opioid receptor (KOR) agonist. PIPE-3297, a potent activator of G-protein signaling (GTPγS EC50 = 1.1 nM, 91% Emax), did not elicit a ß-arrestin-2 recruitment functional response (Emax < 10%). Receptor occupancy experiments performed with the novel KOR radiotracer [3H]-PIPE-3113 revealed that subcutaneous (s.c.) administration of PIPE-3297 at 30 mg/kg in mice achieved 90% occupancy of the KOR in the CNS 1 h post dose. A single subcutaneous dose of PIPE-3297 in healthy mice produced a statistically significant increase of mature oligodendrocytes (P < 0.0001) in the KOR-enriched striatum, an effect that was not observed in animals predosed with the selective KOR antagonist norbinaltorphimine. An equivalent dose given to mice in an open-field activity-monitoring system revealed a small KOR-independent decrease in total locomotor activity versus vehicle measured between 60 and 75 min post dose. Daily doses of PIPE-3297 at both 3 and 30 mg/kg s.c. reduced the disease score in the mouse experimental autoimmune encephalomyelitis (EAE) model. Visually evoked potential (VEP) N1 latencies were also significantly improved versus vehicle in both dose groups, and latencies matched those of untreated animals. Taken together, these findings highlight the potential therapeutic value of functionally selective G-protein KOR agonists in demyelinating disease, which may avoid the sedating side effects typically associated with classical nonbiased KOR agonists.


Assuntos
Receptores Opioides kappa , Transdução de Sinais , Camundongos , Animais , beta-Arrestina 2/farmacologia , Receptores Opioides kappa/agonistas , Proteínas de Ligação ao GTP/metabolismo , Antagonistas de Entorpecentes/farmacologia , Analgésicos Opioides/farmacologia
7.
Mult Scler Relat Disord ; 81: 105139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000130

RESUMO

OBJECTIVES: Detection and prediction of disability progression is a significant unmet need in people with progressive multiple sclerosis (PwPMS). Government and health agencies have deemed the use of patient-reported outcomes measurements (PROMs) in clinical practice and clinical trials a major strategic priority. Nevertheless, data documenting the clinical utility of PROMs in neurological diseases is scarce. This study evaluates if assessment of PROMs could track progression in PwPMS. METHODS: Emerging blood Biomarkers in Progressive Multiple Sclerosis (EmBioProMS) investigated PROMs (Beck depression inventory-II (BDI-II), multiple sclerosis impact scale-29 (MSIS-29), fatigue scale for motor and cognition (FSMC)) in PwPMS (primary [PPMS] and secondary progressive MS [SPMS]). PROMs were evaluated longitudinally and compared between participants with disability progression (at baseline; retrospective evidence of disability progression (EDP), and during follow up (FU); prospective evidence of confirmed disability progression (CDP)) and those without progression. In an independent cohort of placebo participants of the phase III ORATORIO trial in PPMS, the diagnostic and prognostic value of another PROMs score (36-Item Short Form Survey [SF-36]) regarding CDP was evaluated. RESULTS: EmBioProMS participants with EDP in the two years prior to inclusion (n = 136/227), or who suffered from CDP during FU (number of events= 88) had worse BDI-II, MSIS-29, and FSMC scores compared to PwPMS without progression. In addition, baseline MSIS29physical above 70th, 80th, and 90th percentiles predicted future CDP/ progression independent of relapse activity in EmBioProMS PPMS participants (HR of 3.7, 6.9, 6.7, p = 0.002, <0.001, and 0.001, respectively). In the placebo arm of ORATORIO (n = 137), the physical component score (PCS) of SF-36 worsened at week 120 compared to baseline, in cases who experienced progression over the preceding trial period (P = 0.018). Worse PCS at baseline was associated with higher hazard ratios of disability accumulation over the subsequent 120 weeks (HR: 2.01 [30th-], 2.11 [20th-], and 2.8 [10th percentile], P = 0.007, 0.012 and 0.005, respectively). CONCLUSIONS: PROMs could provide additional, practical, cost-efficient, and remotely accessible insight about disability progression in PMS through standardized, structured, and quantifiable patient feedback.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Estudos Retrospectivos , Estudos Prospectivos , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Medidas de Resultados Relatados pelo Paciente , Progressão da Doença
8.
JAMA Neurol ; 80(12): 1317-1325, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930670

RESUMO

Importance: Mechanisms contributing to disability accumulation in multiple sclerosis (MS) are poorly understood. Blood neurofilament light chain (NfL) level, a marker of neuroaxonal injury, correlates robustly with disease activity in people with MS (MS); however, data on the association between NfL level and disability accumulation have been conflicting. Objective: To determine whether and when NfL levels are elevated in the context of confirmed disability worsening (CDW). Design, Setting, and Participants: This study included 2 observational cohorts: results from the Expression, Proteomics, Imaging, Clinical (EPIC) study at the University of California San Francisco (since 2004) were confirmed in the Swiss Multiple Sclerosis Cohort (SMSC), a multicenter study in 8 centers since 2012. Data were extracted from EPIC in April 2022 (sampling July 1, 2004, to December 20, 2016) and SMSC in December 2022 (sampling June 6, 2012, to September 2, 2021). The study included 2 observational cohorts in tertiary MS centers. All participants of both cohorts with available NfL results were included in the study, and no eligible participants were excluded or declined to participate. Exposure: Association between NfL z scores and CDW. Main Outcome Measures: CDW was defined as Expanded Disability Status Scale (EDSS) worsening that was confirmed after 6 or more months and classified into CDW associated with clinical relapses (CDW-R) or independent of clinical relapses (CDW-NR). Visits were classified in relation to the disability worsening events into CDW(-2) for 2 visits preceding event, CDW(-1) for directly preceding event, CDW(event) for first diagnosis of EDSS increase, and the confirmation visit. Mixed linear and Cox regression models were used to evaluate NfL dynamics and to assess the association of NfL with future CDW, respectively. Results: A total of 3906 EPIC visits (609 participants; median [IQR] age, 42.0 [35.0-50.0] years; 424 female [69.6%]) and 8901 SMSC visits (1290 participants; median [IQR] age, 41.2 [32.5-49.9] years; 850 female [65.9%]) were included. In CDW-R (EPIC, 36 events; SMSC, 93 events), NfL z scores were 0.71 (95% CI, 0.35-1.07; P < .001) units higher at CDW-R(-1) in EPIC and 0.32 (95% CI, 0.14-0.49; P < .001) in SMSC compared with stable MS samples. NfL elevation could be detected preceding CDW-NR (EPIC, 191 events; SMSC, 342 events) at CDW-NR(-2) (EPIC: 0.23; 95% CI, 0.01-0.45; P = .04; SMSC: 0.28; 95% CI, 0.18-0.37; P < .001) and at CDW-NR(-1) (EPIC: 0.27; 95% CI, 0.11-0.44; P < .001; SMSC: 0.09; 95% CI, 0-0.18; P = .06). Those findings were replicated in the subgroup with relapsing-remitting MS. Time-to-event analysis confirmed the association between NfL levels and future CDW-R within approximately 1 year and CDW-NR (in approximately 1-2 years). Conclusions and Relevance: This cohort study documents the occurrence of NfL elevation in advance of clinical worsening and may hint to a potential window of ongoing dynamic central nervous system pathology that precedes the diagnosis of CDW.


Assuntos
Avaliação da Deficiência , Esclerose Múltipla , Proteínas de Neurofilamentos , Adulto , Feminino , Humanos , Biomarcadores/sangue , Estudos de Coortes , Progressão da Doença , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla Recidivante-Remitente , Proteínas de Neurofilamentos/sangue , Recidiva
10.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873342

RESUMO

Chronic demyelination is theorized to contribute to neurodegeneration and drive progressive disability in demyelinating diseases like multiple sclerosis. Here, we describe two genetic mouse models of inducible demyelination, one distinguished by effective remyelination, and the other by remyelination failure and persistent demyelination. By comparing these two models, we find that remyelination protects neurons from apoptosis, improves conduction, and promotes functional recovery. Chronic demyelination of neurons leads to activation of the mitogen-associated protein kinase (MAPK) stress pathway downstream of dual leucine zipper kinase (DLK), which ultimately induces the phosphorylation of c-Jun in the nucleus. Both pharmacological inhibition and CRISPR/Cas9-mediated disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. These findings provide direct experimental evidence that remyelination is neuroprotective and identify DLK inhibition as a potential therapeutic strategy to protect chronically demyelinated neurons.

11.
Mult Scler ; 29(8): 945-955, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37282545

RESUMO

BACKGROUND: The N-MOmentum trial investigated safety and efficacy of inebilizumab in participants with neuromyelitis optica spectrum disorder (NMOSD). OBJECTIVE: Evaluate the attack identification process and adjudication committee (AC) performance in N-MOmentum. METHODS: Adults (n = 230) with NMOSD and Expanded Disability Status Scale score ⩽8 were randomized (3:1) to inebilizumab 300 mg or placebo. The randomized controlled period was 28 weeks or until adjudicated attack. Attacks were adjudicated according to 18 predefined criteria. Magnetic resonance imaging (MRI) and biomarker (serum glial fibrillary acidic protein [sGFAP]) analyses were performed. RESULTS: A total of 64 participant-reported neurological events occurred; 51 (80%) were investigator-determined to be attacks. The AC confirmed 43 of the investigator-determined attacks (84%). There was high inter- and intra-AC-member agreement. In 25/64 events (39%) and 14/43 AC-adjudicated attacks (33%), MRI was reviewed during adjudication. Retrospective analysis revealed new domain-specific T1 and T2 MRI lesions in 90% of adjudicated attacks. Increased mean sGFAP concentrations (>2-fold change) from baseline were observed in 56% of adjudicated attacks versus 14% of investigator-determined attacks rejected by the AC and 31% of participant-reported events determined not to be attacks. CONCLUSION: AC adjudication of NMOSD attacks according to predefined criteria appears robust. MRI lesion correlates and sGFAP elevations were found in most adjudicated attacks.


Assuntos
Anticorpos Monoclonais Humanizados , Neuromielite Óptica , Neuromielite Óptica/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética , Biomarcadores/sangue , Proteína Glial Fibrilar Ácida/sangue , Anticorpos Monoclonais Humanizados/uso terapêutico , Estudos Retrospectivos
12.
Proc Natl Acad Sci U S A ; 120(20): e2217635120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155847

RESUMO

Myelin repair is an unrealized therapeutic goal in the treatment of multiple sclerosis (MS). Uncertainty remains about the optimal techniques for assessing therapeutic efficacy and imaging biomarkers are required to measure and corroborate myelin restoration. We analyzed myelin water fraction imaging from ReBUILD, a double-blind, randomized placebo-controlled (delayed treatment) remyelination trial, that showed a significant reduction in VEP latency in patients with MS. We focused on brain regions rich in myelin. Fifty MS subjects in two arms underwent 3T MRI at baseline and months 3 and 5. Half of the cohort was randomly assigned to receive treatment from baseline through 3 mo, whereas the other half received treatment from 3 mo to 5 mo post-baseline. We computed myelin water fraction changes occurring in normal-appearing white matter of corpus callosum, optic radiations, and corticospinal tracts. An increase in myelin water fraction was documented in the normal-appearing white matter of the corpus callosum, in correspondence with the administration of the remyelinating treatment clemastine. This study provides direct, biologically validated imaging-based evidence of medically induced myelin repair. Moreover, our work strongly suggests that significant myelin repair occurs outside of lesions. We therefore propose myelin water fraction within the normal-appearing white matter of the corpus callosum as a biomarker for clinical trials looking at remyelination.


Assuntos
Esclerose Múltipla , Remielinização , Substância Branca , Humanos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Encéfalo/patologia , Bainha de Mielina/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Água , Biomarcadores
13.
J Neurol ; 270(7): 3315-3328, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37184659

RESUMO

BACKGROUND AND AIMS: To investigate the prognostic value of blood neurofilament light chain protein (NfL) levels in the acute phase of coronavirus disease 2019 (COVID-19). METHODS: We conducted an individual participant data (IPD) meta-analysis after screening on MEDLINE and Scopus to May 23rd 2022. We included studies with hospitalized adult COVID-19 patients without major COVID-19-associated central nervous system (CNS) manifestations and with a measurement of blood NfL in the acute phase as well as data regarding at least one clinical outcome including intensive care unit (ICU) admission, need of mechanical ventilation (MV) and death. We derived the age-adjusted measures NfL Z scores and conducted mixed-effects modelling to test associations between NfL Z scores and other variables, encompassing clinical outcomes. Summary receiver operating characteristic curves (SROCs) were used to calculate the area under the curve (AUC) for blood NfL. RESULTS: We identified 382 records, of which 7 studies were included with a total of 669 hospitalized COVID-19 cases (mean age 66.2 ± 15.0 years, 68.1% males). Median NfL Z score at admission was elevated compared to the age-corrected reference population (2.37, IQR: 1.13-3.06, referring to 99th percentile in healthy controls). NfL Z scores were significantly associated with disease duration and severity. Higher NfL Z scores were associated with a higher likelihood of ICU admission, need of MV, and death. SROCs revealed AUCs of 0.74, 0.80 and 0.71 for mortality, need of MV and ICU admission, respectively. CONCLUSIONS: Blood NfL levels were elevated in the acute phase of COVID-19 patients without major CNS manifestations and associated with clinical severity and poor outcome. The marker might ameliorate the performance of prognostic multivariable algorithms in COVID-19.


Assuntos
COVID-19 , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Prognóstico , Biomarcadores , Filamentos Intermediários , Sistema Nervoso Central , Proteínas de Neurofilamentos
14.
medRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37205595

RESUMO

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. Here, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster of PwMS that share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active prodromal period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid (CSF) and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically- or radiologically-isolated neuroinflammatory syndromes.

15.
Commun Med (Lond) ; 3(1): 71, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217574

RESUMO

BACKGROUND: In recent years, the ability of conventional magnetic resonance imaging (MRI), including T1 contrast-enhanced (CE) MRI, to monitor high-efficacy therapies and predict long-term disability in multiple sclerosis (MS) has been challenged. Therefore, non-invasive methods to improve MS lesions detection and monitor therapy response are needed. METHODS: We studied the combined cuprizone and experimental autoimmune encephalomyelitis (CPZ-EAE) mouse model of MS, which presents inflammatory-mediated demyelinated lesions in the central nervous system as commonly seen in MS patients. Using hyperpolarized 13C MR spectroscopy (MRS) metabolic imaging, we measured cerebral metabolic fluxes in control, CPZ-EAE and CPZ-EAE mice treated with two clinically-relevant therapies, namely fingolimod and dimethyl fumarate. We also acquired conventional T1 CE MRI to detect active lesions, and performed ex vivo measurements of enzyme activities and immunofluorescence analyses of brain tissue. Last, we evaluated associations between imaging and ex vivo parameters. RESULTS: We show that hyperpolarized [1-13C]pyruvate conversion to lactate is increased in the brain of untreated CPZ-EAE mice when compared to the control, reflecting immune cell activation. We further demonstrate that this metabolic conversion is significantly decreased in response to the two treatments. This reduction can be explained by increased pyruvate dehydrogenase activity and a decrease in immune cells. Importantly, we show that hyperpolarized 13C MRS detects dimethyl fumarate therapy, whereas conventional T1 CE MRI cannot. CONCLUSIONS: In conclusion, hyperpolarized MRS metabolic imaging of [1-13C]pyruvate detects immunological responses to disease-modifying therapies in MS. This technique is complementary to conventional MRI and provides unique information on neuroinflammation and its modulation.


Magnetic resonance imaging (MRI) is widely used in the clinic to diagnose multiple sclerosis (MS), which affects the central nervous system and leads to a range of disabling symptoms. However, MRI is often not capable of detecting how well a patient responds to therapies, in particular those targeting the immune system. We questioned whether an advanced MRI method called hyperpolarized 13C MRS could help. Using a mouse model for MS, we showed that hyperpolarized 13C MRS can detect response to two therapies used in the clinic, namely fingolimod and dimethyl fumarate when conventional MRI could not. We also showed that this method is sensitive to the immune response. As hyperpolarized 13C MRS is becoming available in many centers worldwide, it could be used to evaluate existing and new treatments for people living with MS, improving care and quality of life.

16.
JAMA Neurol ; 80(6): 542-543, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37010852

RESUMO

This Viewpoint describes the benefits and limitations of using neurofilament light chain (NfL) as a marker of real-time disease activity and treatment response in multiple sclerosis.


Assuntos
Filamentos Intermediários , Esclerose Múltipla , Humanos , Biomarcadores , Proteínas de Neurofilamentos
17.
Artigo em Inglês | MEDLINE | ID: mdl-36878713

RESUMO

BACKGROUND AND OBJECTIVES: With the increasing use of visually evoked potentials (VEPs) as quantitative outcome parameters for myelin in clinical trials, an in-depth understanding of longitudinal VEP latency changes and their prognostic potential for subsequent neuronal loss will be required. In this longitudinal multicenter study, we evaluated the association and prognostic potential of VEP latency for retinal neurodegeneration, measured by optical coherence tomography (OCT), in relapsing-remitting MS (RRMS). METHODS: We included 293 eyes of 147 patients with RRMS (age [years, median ± SD] 36 ± 10, male sex 35%, F/U [years, median {IQR} 2.1 {1.5-3.9}]): 41 eyes had a history of optic neuritis (ON) ≥6 months before baseline (CHRONIC-ON), and 252 eyes had no history of ON (CHRONIC-NON). P100 latency (VEP), macular combined ganglion cell and inner plexiform layer volume (GCIPL), and peripapillary retinal nerve fiber layer thickness (pRNFL) (OCT) were quantified. RESULTS: P100 latency change over the first year predicted subsequent GCIPL loss (36 months) across the entire chronic cohort (p = 0.001) and in (and driven by) the CHRONIC-NON subset (p = 0.019) but not in the CHRONIC-ON subset (p = 0.680). P100 latency and pRNFL were correlated at baseline (CHRONIC-NON p = 0.004, CHRONIC-ON p < 0.001), but change in P100 latency and pRNFL were not correlated. P100 latency did not differ longitudinally between protocols or centers. DISCUSSION: VEP in non-ON eyes seems to be a promising marker of demyelination in RRMS and of potential prognostic value for subsequent retinal ganglion cell loss. This study also provides evidence that VEP may be a useful and reliable biomarker for multicenter studies.


Assuntos
Esclerose Múltipla , Neurite Óptica , Humanos , Masculino , Potenciais Evocados , Prognóstico , Retina , Células Ganglionares da Retina , Feminino , Adulto , Pessoa de Meia-Idade
18.
J Neurol Neurosurg Psychiatry ; 94(7): 560-566, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36810323

RESUMO

BACKGROUND: The novel optic neuritis (ON) diagnostic criteria include intereye differences (IED) of optical coherence tomography (OCT) parameters. IED has proven valuable for ON diagnosis in multiple sclerosis but has not been evaluated in aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders (AQP4+NMOSD). We evaluated the diagnostic accuracy of intereye absolute (IEAD) and percentage difference (IEPD) in AQP4+NMOSD after unilateral ON >6 months before OCT as compared with healthy controls (HC). METHODS: Twenty-eight AQP4+NMOSD after unilateral ON (NMOSD-ON), 62 HC and 45 AQP4+NMOSD without ON history (NMOSD-NON) were recruited by 13 centres as part of the international Collaborative Retrospective Study on retinal OCT in Neuromyelitis Optica study. Mean thickness of peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell and inner plexiform layer (GCIPL) were quantified by Spectralis spectral domain OCT. Threshold values of the ON diagnostic criteria (pRNFL: IEAD 5 µm, IEPD 5%; GCIPL: IEAD: 4 µm, IEPD: 4%) were evaluated using receiver operating characteristics and area under the curve (AUC) metrics. RESULTS: The discriminative power was high for NMOSD-ON versus HC for IEAD (pRNFL: AUC 0.95, specificity 82%, sensitivity 86%; GCIPL: AUC 0.93, specificity 98%, sensitivity 75%) and IEPD (pRNFL: AUC 0.96, specificity 87%, sensitivity 89%; GCIPL: AUC 0.94, specificity 96%, sensitivity 82%). The discriminative power was high/moderate for NMOSD-ON versus NMOSD-NON for IEAD (pRNFL: AUC 0.92, specificity 77%, sensitivity 86%; GCIP: AUC 0.87, specificity 85%, sensitivity 75%) and for IEPD (pRNFL: AUC 0.94, specificity 82%, sensitivity 89%; GCIP: AUC 0.88, specificity 82%, sensitivity 82%). CONCLUSIONS: Results support the validation of the IED metrics as OCT parameters of the novel diagnostic ON criteria in AQP4+NMOSD.


Assuntos
Aquaporinas , Neuromielite Óptica , Neurite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Estudos Retrospectivos , Benchmarking , Neurite Óptica/diagnóstico , Tomografia de Coerência Óptica/métodos , Autoanticorpos , Aquaporina 4
19.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719741

RESUMO

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Nós Neurofibrosos/metabolismo , Potássio/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo
20.
Neurology ; 99(15): e1685-e1693, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36038272

RESUMO

BACKGROUND AND OBJECTIVES: The timing of neurodegeneration in multiple sclerosis (MS) remains unclear. It is critical to understand the dynamics of neuroaxonal loss if we hope to prevent or forestall permanent disability in MS. We therefore used a deeply phenotyped longitudinal cohort to assess and compare rates of neurodegeneration in retina and brain throughout the MS disease course. METHODS: We analyzed 597 patients with MS who underwent longitudinal optical coherence tomography imaging annually for 4.5 ± 2.4 years and 432 patients who underwent longitudinal MRI scans for 10 ± 3.4 years, quantifying macular ganglion cell-inner plexiform layer (GCIPL) volume and cortical gray matter (CGM) volume. The association between the slope of decline in the anatomical structure and the age of entry in the cohort (categorized by the MRI cohort's age quartiles) was assessed by hierarchical linear models. RESULTS: The rate of CGM volume loss declined with increasing age of study entry (1.3% per year atrophy for the age of entry in the cohort younger than 35 years; 1.1% for older than 35 years and younger than 41; 0.97% for older than 41 years and younger than 49; 0.9% for older than 49 years) while the rate of GCIPL thinning was highest in patients in the youngest quartile, fell by more than 50% in the following age quartile, and then stabilized (0.7% per year thinning for the age of entry in the cohort younger than 35 years; 0.29% for age older than 35 and younger than 41 years; 0.34% for older than 41 and younger than 49 years; 0.33% for age older than 49 years). DISCUSSION: An age-dependent reduction in retinal and cortical volume loss rates during relapsing-remitting MS suggests deceleration in neurodegeneration in the earlier period of disease and further indicates that the period of greatest adaptive immune-mediated inflammatory activity is also the period with the greatest neuroaxonal loss.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Doenças Neurodegenerativas , Adulto , Atrofia/patologia , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Doenças Neurodegenerativas/patologia , Retina/diagnóstico por imagem , Retina/patologia , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA